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Abstract. Free damped vibrations of a mechanical two-degree-of-freedom system are considered under the con-
ditions of one-to-one or two-to-one internal resonamn@e, when natural frequencies of two modes — a mode of
vertical vibrations and a mode of pendulum vibrations — are approximately equal to each other or when one natural
frequency is nearly twice as large as another natural frequency. Damping features of the system are defined by the
fractional derivatives with fractional parameters (the orders of the fractional derivatives) changing from zero to
one. It is assumed that the amplitudes of vibrations are small but finite values, and the method of multiple scales
is used as a method of solution. The model put forward allows one to obtain the damping coefficient dependent on
the natural frequency of vibrations, so it has been shown that the amplitudes of vertical and pendulum vibrations
attenuate by an exponential law with damping ratios which are exponential functions of the natural frequencies.
Damped soliton-like solutions have been found analytically.
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1. Introduction

It is known that the transfer of energy from one type to another is made possible during
vibrational processes in nonlinear systems. This is caleetgy exchangfl—2]. This phe-
nomenon is particularly evident in modern engineering structures which are very light and
flexible due to application of present-day materials, resulting in finite displacements of indi-
vidual structural elements as well as of the structure as a whole. Among such constructions are
suspension-combined systems: suspension and cable-stayed bridges, suspension roofs, etc.

Investigations on energy exchange originate from the paper by Vitt and Gorelik [3], wherein
the authors studied small nonlinear vibrations of a two-degree-of-freedom (2dof) system con-
sisting of a load suspended on a linearly elastic spring and executing pendulum vibrations and
vibrations along the spring’s axis in the same vertical plane. In spite of the apparent simplicity
of that system, it realistically explains some phenomena occurring during vibrations of more
complex nonlinear systems, and in particular, describes all types of energy exchange from
pendulum vibratory motions into oscillatory motions along the spring’s axisyvamdversa
the periodic and aperiodic energy interchange, as well as stationary regimes during which
energy exchange is absent.

The energy exchange mechanism in a similar nonlinear 2dof system has been studied by
Sado [4] and Shitikova [5]. The system was made up of two loads, one of which was suspended
on a linearly elastic spring and executed vertical vibrations; the other was suspended on an
unstretched rod and executed pendulum vibrations in the same vertical plane. Reviews devoted
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Figure 1. Scheme of a 2dof mechanical system.

to nonlinear vibrations of 2dof systems can be found in Nayfeh and Balachandran [1] and Sado
[2].

The experimental data obtained by Abdel-Ghaffar and Housner [6] and Abdel-Ghaffar and
Scanlan [7] during ambient vibration studies of the Vincent-Thomas Suspension Bridge and
the Golden Gate Bridge, respectively, show that different vibrational modes feature different
amplitude damping factors, and the order of smallness of these coefficients tells about low
damping capacity of suspension-combined systems, resulting in prolonged energy transfer
from one partial subsystem to another. Besides, as the natural vibration frequencies increase,
the corresponding damping ratios decrease.

Introducing common linear viscosity (when damping features of the system are prescribed
by the first derivative of the displacement with respect to time) into the nonlinear 2dof system
results in damping of the energy exchange process [8-9]; however, in this case the damping
coefficient is independent of the frequency of vibrations, but this result is in conflict with the
experimental data presented in [6-7].

To get the theoretical investigations in line with the experiment, in the given paper, frac-
tional derivatives are introduced for describing the processes of internal friction proceeding in
a 2dof mechanical system at free vibrations. The model put forward allows one to obtain the
damping coefficient dependent on the natural frequency of vibrations. The model proposed
describes realistically the dynamic behaviour of many nonlinear systems with more than one
degree-of-freedom, among them multi-degree-of-freedom suspension-combined systems in
the special case that only two interacting modes dominate in the vibratory motion.

2. Problem formulation

Consider nonlinear free damped vibrations of a two-degree-of-freedom mechanical system
presented in Figure 1. Assume that such a system vibrates in a viscous medium whose viscous
features are defined by fractional derivatives. In this case the damping forces acting on the
massn; and the pendulum of lengthand mass:, are, respectively, the following

01= :BDyly’ Q2= IBID)’ZgD, (l)
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wherey is the displacement of the maass, ¢ is the deflection angle of the pendulughis the
viscous coefficient of the medium, the damping fo@eis directed vertically, the damping
force Q5 is directed tangentially to the trajectory of the mass the fractional derivative
D”x (x = y or ¢) is defined as follows [10, pp. 41-44]

d [! x(u)du
Yy —
Dx_dz/O FA—pa—wy’ CO<vsb @

wherey is the order of the fractional derivative (fractional parameter), B(d— y) is the
Gamma-function.

Then the equations of motion of such a system in dimensionless form, accurate to within
values of second-order smallness, can be written as

§* + BD"y* + wi?y* — ag? — ap$ =0, (3a)
¢ + BD2¢ + Q29 — bpi* = 0, (3b)

where an overdot denotes a differentiation with respect to thertime
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where g is acceleration of gravity, anfl is the spring rigidity. For ease of presentation,
asterisks will be omitted henceforth.

Assume that the linear natural frequenayand the linear natural frequen€yp are equal
or approximately equal to each other (the case of the one-to-one internal resonance)

wo = Qo+ %o (4a)

or the linear natural frequeneyy is nearly twice as large as the linear natural frequeRgy
(the case of the two-to-one internal resonance), such that

wo = 290 + €0, (4b)

whereo is a detuning parameter, amds a small parameter which is of the same order of
magnitude as the amplitudes.

The set of Equations (3) with due account for relationship (4a) or (4b) describes the
two processes which are related to each other and go on concurrently: the energy-exchange
mechanism between vertical vibrations of the massand the pendulum’s vibrations, and
the process of energy dissipation during this interaction. Since further investigations will be
carried out by the method of multiple scales and these two processes should proceed on the
same time scale, then it is necessary to assume that the viscosity coeffibiemnthe order of
2 in the case of the one-to-one internal resonance or the ordeindhe case of the two-to-
one internal resonancee., it can be represented gs= ¢u or 8 = eu, respectively, where
w is a finite value. At other orders of smallness of the viscosity coefficient, energy dissipation
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will occur either too fast (when the order of smallness is larger #an the case of the one-
to-one internal resonance or the ordersdh the case of the two-to-one internal resonance)
or too slow (when the order of smallness is less thaim the case of the one-to-one internal
resonance or the order efin the case of the two-to-one internal resonance) relative to the
process of energy exchange.

A fractional derivative is the immediate extension of an ordinary derivative. In fact, when
y — 1, the functionI"(1 — y)(t — u)”]~* tends to the Diraé-functions(t — u), and hence
D”x tends tax, i.e,, aty — 1 the fractional derivative goes over into the ordinary derivative,
and the mathematical model of the 2dof mechanical system under consideration transforms
into the Kelvin—Voigt model, wherein the elastic element behaves nonlinearly but the viscous
element behaves linearly. When— 0, the fractional derivative Dx tends tox(¢). To put
it otherwise, the introduction of the new fractional parameterlong with the parametet
allows one to change not only the magnitude of viscosity at the cost of an increase or decrease
in the parametey, but also the character of viscosity at the sacrifice of variations in the
fractional parameter.

3. Method of solution
An approximate solution of Equations (3) for small amplitudes weakly varying with time can
be represented by an expansion in terms of different time scales in the following form [11,
Chapter 6]

y(6) = ey1(To, T1, Tp, ...) + €%y2(To, o, Tor .. ) + €%y3(To, T, To, .. ) + -+, (5a)

o(t) = ep1(To, T1, T, ...) + &%02(To, T1, T, ...) + &%03(To, Ty, Tz, ...) + -+, (5b)

whereT, = ¢"t(n =0, 1, 2, ...) are new independent variables.
Considering that

% = Do +&Dy +&?Da+ -+, :L; = D3 + 2¢DoD; + (D% 4 2DgDy) + - - -
and substituting (5) in (3), after equating the coefficients at like powersmtero, we obtain
to ordere

Dovi+@oy1 =0, Dpr+ Qfpr =0; (6a,b)
to ordere?:

Dgy2 + wgy2 = —2DoD1y1 + agiDies + a(Dowr)® — 14(2 — k)Dg'yu, (7a)

D3¢z + Q3¢2 = —2DoD1¢1 + bp1D3y1 — 11(2 — k)Dl2ey; (7b)
to ordere®:

D2ys + wd¢p3 = —2DgD1y, — (D? 4 2DgDs)y1 + ag1(DZps 4+ 2DoD1¢1)

+apD3¢1 + 2aDo@1 (D11 + Dowz) — pu(k — 1)Dityy, (8a)



Analysis of nonlinear vibrations347
D3ps + Q3ps = —2DoD1g2 — (D3 + 2DoD2)¢1 + b1 (D3pz + 2DoD1y1)
+b@,Diy1 — p(k — 1Dy, (8b)

where D, = 9/97T,.

The sets of Equations (6)—(8) describe the cases of the one-to-one and two-to-one internal
resonances at= 2 andk = 1, respectively.

During the deduction of Equations (6)—(8) it was assumed that

d 14
D7 = (E> = (Do +&D1 4+ &°Dy + -+ +)”

= D} +eyD} "Dy + e%y(y — DD} Dyt - -+, ©)

where [ is obtained from (2) by replacingwith 7o. Thus, the fractional derivative is inter-
preted as the fractional power of the differentiation operator. Such a notion of the fractional
derivative is used in scientific literature under a proper interpretation for expanding fractional
differentiation to some functional spaces (see, for example, Salab. [10, Chapter 2,
Section 5]).

We shall seek the solution of Equations (6) in the form

y1 = A1(T1, T) expliwoTo) + A1(T1, T2) eXp(—iwoTo), (10a)
@1 = Aa(T1, T2) exp(iQ07T0) + Ax(T1, To) exp(—iQ20To), (10b)

whereA; and A, are unknown complex functions, add and A, are the complex conjugates
of A; andA,, respectively.

The influence of the detuning parameteon undamped free vibrations was investigated in
Rossikhin and Shitikova [12], and hence, in the present paper, we shall examine the influence
of damping modelled by a fractional derivative on free damped vibrations of the system under
considerationj.e., we shall putr = 0 in further discussion.

3.1. THE CASE OF A ONETO-ONE INTERNAL RESONANCE

To construct the solution in the case of a one-to-one internal resonance, it will suffice to
restrict consideration to the terms of the ordesdéind to consider the amplitudels and A,
as functions off; and 7».

In order to eliminate secular terms arising in the second approximation, it would suffice to
consider the functiond; and A, dependent off, only. Then, the solution of Equations (7) at
k = 2 with due account of (10) takes the form

Q? :
Vo = ga_gAg exp(2iwgTo) + cc, ()
o)

2
, . -
92 = b3 (34142 XPp2iQ0T0) — AzAy) + cc, (12)
0

wherecc is the complex conjugate part to the preceding terms.
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If we substitute expressions (10)—(12) in the right-hand sides of Equations X822,
then we are led to a system of equations for determigingnd¢s. The solution should not
contain the secular terms, and therefore, the following relationships are to be satisfied

—iD2A1 — 2pwg Hiwo) A1 + abwo(3A1A2A + $A1A5) =0, (13)
- a)4 - -
—iD2A2 — 205 (19207 A2 — 3abQASA, + bZQ—g(%AlAlAZ +1A24) =0 (14)
0

When deducing Equations (13) and (14), we used the known formula from fractional
calculus [10, Table 9.1, p. 140]

H e8] —u T
D! o — g7 gtTo 4 sinTy / u’ e odu.
0

u-+a (15)

T

The second term in formula (15) can be omitted in comparison with the first one in the
two cases: when the valye is small, for example of the order &f or when the transient
processes, which define only the drift of the equilibrium position around which the vibration
motion occurs [13], are neglected. The first assumption is valid for suspension bridges [14]
and is verified by experimental data [6—7]. In the present paper, we consider the second case.

Let us multiply Equations (13) and (14) by, and A, respectively, and find their com-
plex conjugates. Adding every pair of the mutually adjoint equations with each other and
subtracting one from the other, we obtain as a result

i(A1D2A1 — A1D2A7) — ngl_lA1A1 cos(37y1)

+abwo(3A1A1A24, + 1(AZAS + ATAD) =0, (16a)
i(A2D2Az — ApD2A) — M93271A2A2 CoOS37y>2)

+bwo(3aA1A1A2A, — BaASAS + Ib(AZAS + ATAY) =0, (16b)
i(A1D2A1 + A1D2A1) + inwf tA1ArsinGryr) + Labwo(AZAS — A2A3) =0,  (16c)
i(A2D245 4+ A2D2A) + iuQY " A2Azsin(Amyo) + 3b%wo(A2A% — A2A%) = 0. (16d)
Representing the functiorns; and A, in polar form
A1 = a explipy), Az = az explipy), (17)

we rewrite Equations (16) as

(a?) 4 s1a? — abwoazaZ siné = 0, (18a)
(a3) 4 s2a3 + bPwoa?as sins = 0, (18b)
. 1 2,1, 1 _

@1 — 301 + abwoas (5 + 5 €0S) = 0, (18c)
1 12 a2 1b o, _

@2 — 502 + abwo(za1 — 3a5 + > aal coss) = 0, (18d)
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Where(al?)- = 2a;a;(i = 1, 2), an overdot denotes differentiation with respecti(oé =
2(¢2 — ¢1), and

-1 .. -1 .
s1= poyt  SiINGGTy), 52 = uQy:  sin(3my),
1 -1
o1 = pwy TCoS3my), 0= uQY  coA3myy).

The obtained set of Equations (18) differs from the similar set presented in [9] for an
ordinary linear damping in that it describes the vibratory motions with the damping coeffi-
cient depending on the vibration frequency. This phenomena is verified by experimental data
obtained for nonlinear systems [6—7, 14].

Equations (18a) and (18b) can be rewritten as

a?) + s1a?
o=
Introducing new function§(7») andn(7>), such that
ai = E(Tp) exp(—s1Ty), a5 = Eqn(T2) exp(—s2Ty), (20)
whereEj is the initial system’s energy, and substituting (20) in (19), we have
£ exp(—s1Tp) _a 1)

nexp(—s2T) b

The solution to (21) gives the following relation between the functig(Ts) andn(73)

b b T
N(Tp) = —(1—§) sV — —(5, —51) | (1—§)€2V2dTy. (22)
a a 0

Then, Equations (18) take the form

. TZ
£ — bPwoEoE [(1 —&)e 12 _ (5, — 5q) 7212 / (1— &) eV de] siné = 0, (23a)
0

. b
8 — (02 — 01) + abwo(a? — 5a3) + abwy (—af - ag) coss = 0. (23b)
a

The initial conditions

&|r,—0 = &o, S|r,=0 = do (24)

should be added to (23).

The nonlinear set of Equations (23) with the initial conditions (24) completely describe
the vibrational process of the mechanical system being investigated under the condition of the
internal resonance one-to-one. The set of Equations (23) with due account for (20), (22) and
(24) can be solved numerically.
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In the partial case whep, = y, = y, the solution can be reduced to the calculation of
an incomplete elliptic integral of the first kind. Thus, multiplying (18a) and (18k) bypda,
respectively, then adding them, and using (4a), we obtain

E + pwl 'Esin(iny) =0, (25a)
E =a?+4 ab a3, (25b)

wherekE is the energy of the system.
Integration of (25) yields

E = Eqgexp(—sT>), § = S1ly=y. (26a,b)

Formulas (26) show that, owing to the fractional parametedissipation of the system'’s
energy depends on the natural frequency of vibrations.

Wheny — 1, the damping value tends to the viscosity coefficiept, and from (26) it
follows that

E = Egexp(—uT>), s = /L. (27a,b)
Reference to (27) shows that in the case- 1 the damping coefficient is independent of

the natural frequencyy.
Wheny; = y, = y, Equations (20) and (23) take, respectively, the form

a1 = / Eo exp(—3sT>), az = v Eo(1 — §)ba~texp(—3sTo), (28a,b)
£ = woEob?t(1 — &) exp(—sT») sing, (29a)
5= b2w0E0|:(l — 2£) oSS — :—i % E+¥a- s)] exp(—sT>). (29b)

Dividing (29b) by (29a), we arrive at

dcoss 1-2¢ 22 1 101
& +E(l_$)cos(3_§?$— 3 (30)

The solution of (30) has the form

G1(¢,8) = £(1— £) coss — % E2-2(1-8°=0GY, (31)

whereGg = G1(&g, 8p) is an arbitrary constant.
Eliminating the valu& from (29a), taking due account of (31), and integrating dgewe
have

1 /E df w0b2E0
= 1—exp(—sTy)], (32
Vmimz Je, [(E2 + pi€ + g (E2 + pat + g2)] 7 L 2]
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8 a 5 a 13 7
mi=—3z — o= my =3 +§, pl:%’ P2=—%,

g1=—(GI+DmiY, 2= (G} + Dmy.

The integral on the left-hand side of (32) can be transformed into an incomplete elliptic
integral of the first kind [15, Chapter 17].

Let us investigate the particular solution of (29) corresponding to the &ase0. Then
it follows from (29a) that sid = 0,i.e,§ = 0+ nn(n = 0,1,2,...). Considering this
magnitude ob in (28b), we are led to the following relationship for

10
:|:1+§

T3 (33)
2(£1+ £ +3)

E=t5 =

which vanishes the expression in square brackets in (29b).
Substituting the found magnitude eg (33) in (28), we obtain the expressions for the
amplitudes of vibrations

T- —s T
a1 = (a1)o eXp(%) , ap = (a2)o exp( Sz 2) , (34)

where (a1)o and (ay)q are the initial magnitudes of the amplitudes and a,, respectively.
From (34) it is seen that the obtained particular solution describes the aperiodic regime without
energy exchange.

Putting x = 0 in all equations, we can obtain the solution for free undamped vibra-
tions of the system under consideration being under the conditions of the one-to-one internal
resonance.

3.2. THE CASE OF A TWOTO-ONE INTERNAL RESONANCE

Now consider the case (4h)e. when a two-to-one internal resonance takes place. To con-
struct the solution in the case of the two-to-one internal resonance, it will suffice to restrict
consideration to the terms of the orders3fand to consider the amplitudets, and A, as
functions of7; only.

In order to eliminate secular terms arising in the second approximation, it would suffice to
consider the following equalities:

2iwgD1A1 + A1 (iwe)™ + 2aA5Q5 = 0, (35)
2iQD1 A + 11 A(1Q0)72 + bA1Arwi = 0. (36)

As a result of the procedure used for the deduction of (18), we obtain from relations (35)
and (36) with due account of (4b)

1
(af)' + slaf + Eaa)oalag sind =0, (37a)

(a%)' + szag — Zba)oalag sind =0, (37b)
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01— %O’l — %aa)oagail coss = 0, (37¢)
¢2 — 302 — bwoay €0S§ = 0, (37d)

where (aiz)- = 24;4;(i = 1,2), an overdot denotes differentiation with respectrio and
§ =290, — ¢1.

The obtained set of (37) differs from the similar set presented in [9] for an ordinary linear
damping in that it describes the vibratory motions with the damping coefficient depending
on the vibration frequency. This phenomena is verified by experimental data obtained for
nonlinear systems [6—7, 14].

Equations (37a) and (37b) can be rewritten as

(af)' + slaf _ _1— a (38)

(a2)- + spa3 4 b

Introducing new function§(7y) andn(T,), such that

a? = Eof(T1) exp(—s1T4), a3 = Eon(Ty) exp(—s2T1), (39)
and substituting (39) in (38) yields

£ exp(—s172) _1la (40)

ﬁeX[X—Ssz) o 4 l’)

The solution to (40) gives the following relation between the functig(Ts) andn(7y)
b b I

N(Ty) = 4—(1 - §) €2V —4—(5, — 51) / (1-§) ez dhdr. (41)
a a 0

Then the set of (37) takes the form
£ + 2bwoEy/ %62 g1/

T
X [(1 —g)e 1l _ (5, — 57) 5201 / (1—¢&)ele—svh dTl] sing =0, (42a)
0

§ — (02— % 01) + woEy %6 Y2 (2an e4V/2-9T1 _ 2pge171/2) coss = 0. (42b)

The initial conditions
&|m=0 = &o, S|r=0 = do (43)

should be added to (42).

The nonlinear set of Equations (42) with the initial conditions (43) completely describe
the vibrational process of the mechanical system being investigated under the condition of
the internal resonance two-to-one. Equations (42) with due account for (41) and (43) can be
solved numerically.

In the particular case wheain = 0, i.e., damping effect is neglected, (42) take the form

£ =—B\JE(L—¢&)sins, (44a)
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$=B8B (\/5 — ;;g) 0SS, (44b)

whereB = ZI?a)oEé/z.
With § = & d§/d¢ and using (44a) yields

dcoss 1 1-—3¢

—— 4= =0 45
& 28a-9 (49)

The solution of (45) has the form

__Gy

EV2(1—&)

whereGY) is an arbitrary constant determined from the initial conditions and defined by

cOS§ = (46)

G9(&o, 80) = £47(1 — &o) cOSSy. (47)

Eliminating the variablé from (44a) and (46), and integrating ov&r, we have

(48)

: dg = — BT
/go E3—2624+&-GHv2 Oh

It may be shown that the integral in (48) can be transformed into an incomplete elliptic
integral of the first kind [13, Chapter 17].

If & — 1 or& — 0, then, as follows from formula (4769 = 0. Substituting the known
valueG) in the integral (48), we obtain

H dg
= _— _BT. (49)
/go (1-£)E12 '
It can be seen from (49) with due account for (44) that, whea & = 1, only phase
modulated motions are realized, because= consta, = 0, but§ = —p; = —¢10, Where

@10 IS the initial phase of the vibrations. &4 # 0, Equation (49) takes the form

%-1/2_1 §

g2 41 =—54h, (50)

o0

log

or

2

[1+ g7 —1-&% exp(—Bn)}
1+&7+1-& exp—BT) |

5(T1):80:%+7{n, n=012.... (51)

Reference to (51) shows that this formula describes pure amplitude-modulated motions,
during which the one-sided energy exchange between the vertical and pendulum vibrations
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takes place such thgt— 1 asT; increases. Iy = 0, then from (51) we obtain the known
soliton-like solution in the form of a single kink [16, Chapter 7].

VE =tanh(1/2 BTy). (52)

Physically speaking, this solution-kink is responsible for the one-sided energy exchange
when the energy of the pendulum vibration completely transforms into the energy of the
vertical vibration with time, so that the pendulum vibrations give way to the vertical vibrations.

From (44a) and (44b) it can be found ti§at 0 and$ = 0 if

£ =1, cossy = +1, (53)

i.e., the initial conditions (53) correspond to the stationary regime when the energy exchange
is absent.

4. Numerical results

As an example, we consider vibrations of the system presented in Figure 1 at the following
magnitudes of the parameters: in the case of the one-to-one resananck7913,a/b =

5, wg = b, u = 0-005, andEy = 1, in the case of the two-to-one resonamce- 2,a/b =

12, «p = 4b, u = 0-05, andE, = 1.

4.1. FREE UNDAMPED VIBRATIONS

Before we investigate the influence of viscosity on the nonlinear damped vibrations of the
system under discussion, we consider the case wherD, i.e., viscosity is absent.

To analyze different vibrational regimes corresponding to different initial conditions, it is
convenient to use a hydrodynamic analogy which has been described in detail in [12]. For
this purpose we introduce for consideration the phase fluid moving along thegdlam¢he
channel of the finite width0 < & < 1) and the infinite lengthico < § < o0) with the
velocity v(v: = & andv; = §). Each point with the coordinates § on the phase plane
corresponds to certain magnitudes of the amplitudeand a, at the fixed instant, and to
the phase difference relative to each other at the same instant. Due to such hydrodynamic
analogy£ and$ are expressed in terms of one and the same stream function in the case of the
one-to-one resonance

. 0G1 . 0G1

= —woh’Eg—=,  § = wob’Eq— 54
& wob” Eo— wob“Eg T (54)
and in the case of the two-to-one resonance

. 3G . 3G
—B—2 = $=-B—2, 55
£ 53 5% (55)

whereG; andG, are defined by formulas (31) and (47), respectively.
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Note that, whenw = 0, the phase fluid is incompressible (div= 0) and its flow is steady
and solenoidal (roiv # 0). The direction of the phase fluid flow along the streamlines is
determined by the sign of the spegd

—0.58333

-0.385

Figure 2. Phase portrait in the case of the one-to-onEigure 3. Phase portrait in the case of the two-to-one
internal resonanceg = Qg = 0-3583. internal resonanceg = 2Q.

Plotting the stream functions in the coordinates for different initial conditions at the
chosen magnitudes of the system’s parameters, we can obtain the phase portraits shown in
Figures 2 and 3 for the cases of the one-to-one and two-to-one internal resonances, respec-
tively.

Note that similar phase portraits were obtained during the analysis of nonlinear free un-
damped vibrations of the Golden Gate Suspension Bridge in San Francisco for a two-to-one
and one-to-one internal resonance [12].

4.1.1. The one-to-one internal resonance

Figure 2 shows the streamlines of the phase fluid in the phase plane for the case of the one-
to-one internal resonance. Magnitudes of the vallyethat correspond to the streamlines

are indicated by digits near the curves; the flow direction of the phase fluid elements are
shown by arrows on the streamlines. The phase fluid flows in an infinitely long channel,
whose boundaries are the straight lifres= 0 andé = 1, corresponding to the phase
modulated motions. In one part the streamlines are nonclosed, which corresponds to the
periodic change of amplitudes and the aperiodic change of phases; in another part they are
closed, which corresponds to the periodic change of both amplitudes and phases. The align-
ment of the circulation zones resembles that of Von Karman vortex streets with a symmetric
arrangement. The adjacent circulation zones osculate at the saddle points with the coordinates
& =05 S=m+t27rn(n=0,12,...),G1 = —1.0833 defined by formula (33) corre-
sponding to the unstable stationary regime. On the boundary lines of these zones (separatrixes)
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the valueG, = —13/12, and the analytical solution corresponding to the solitonlike regime
has the form

2\/ —0-1154(6 — £5)2 + 0-3397+ 0-23077||°

§—&

— +0.0835 >, (56)
§o

log

where the sign '+’ fits to the initial magnitudég < & < 0-8397, —7 &+ 27n < 8o < 27n
and 016032< & < &,, —27 £ 2mn < 8o < —n £ 27n, but the sign ‘-’ conforms to the
initial magnitudest, < & < 0-8397, —27 £+ 27n < 8o < —x = 27n and 016032< & <
&y, —m £ 2nn < §o < £27n.

The upper branch of the separatrix describes the partial irreversible energy transfer from
the vertical vibrations to the pendulum vibrations, but the lower branch, on the contrary, is in
compliance with partial irreversible transfer of the energy of the pendulum vibrations to the
energy of the vertical vibrations.

The motion of the fluid elements along nonclosed streamlines occurs for decreasing values
of §, but along closed streamlines in a counterclockwise direction.
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Figure 4. Trajectories of the phase fluid elements flow whesy = Qg = 03583: (a)

£ = 07703, % = 0, G = —0.9; (b) €91 = 0-8397, 7 = 0-1603, 12 = 0, GY = —1.0833 (1 and 2 indicate
the upper and lower branches of the aperiodic regime (59), respectivel§y; £€D-8453, § = 0, GY=-11;-
— —undamped and damped vibrations when= y» = y = 0-5; and damped vibrations whepyy = 0-1
andy, = 0.9.
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Figure 5.The time 7, dependence of the valuess? and a3 at wp=Q0=03583: (a)
£0=05,80=0, G9= —0.5833; (b)£n=0-7703, =0, G%= — 0.9; (c) £, =0-8397, =0, G = — 1.0833;
(d) £p=0-1603, =0, G9 = — 1.0833; (e)so = 0-8453, =0, G¥= — 1.1; undamped vibrations; — — —
damped vibrations whep =y, =y =0.5; and. damped vibrations whepy =0-1 and 3 =0.9.

The points with the coordinatésg” = 0.5, 80 = £2nn (n = 0,1,2,...), G; = —0-5833
(points like a center) defined by formula (33) corresponding to the stable stationary regime
are located inside the closed streamlines.

4.1.2. The two-to-one internal resonance

Figure 3 shows the streamlines of the phase fluid in the phase plane for the case of the two-to-
one internal resonance. The boundary lines of the circulation zones tend to be located around
the perimeter of the rectangle bounded by the lnes0, &£ = 1, ands = £(x/2)+2rn(n =

0,1,2, ...). Then the flow in each rectangle becomes isolated. On all four rectangle sides,



358 Yu. A. Rossikhin and M. V. Shitikova

0.5 0.6

04
03
£

0.2

0.1

0

08

0.6

0.4

02

Figure 6. Trajectories of the phase fluid elements flow whesy = 2Q¢9 = 0-8165: (a)
£0 = 1/3,80 = 0, GY = 0:385; (b)§p = 05,89 = 0, GJ = 0-3536; ()& = 0,60 = /2, GI = O;
undamped vibrations; — — — damped vibrations whenr= y» = y = 0.5; and damped vibrations when

y1=01and p» = 09.

G, = 0 and inside it the value ofi, preserves its sign. Along the linés= (7/2) + 7n

pure amplitude modulated aperiodic motions (51) are realized; on thé lnd. there exists

the boundary phase-modulated regime. The transition of fluid elements from the points with
the coordinate§ = 0,8 = (r/2) + 27n to the pointst = 0,8 = —(/2) &+ 2rn proceeds
instantly. The points with coordinaté§ = %, 85 = +2rn defined by (53) correspond to the
stable stationary regimes.

4.2. FREE DAMPED VIBRATIONS

Now let us investigate the influence of viscosity on nonlinear free vibrations of the system
under consideration.

4.2.1. The one-to-one internal resonance
First we consider the case when= y», = y. Then from (29) it follows that

. 3G . 3G
- _‘”Oszoa—al exp(—sT), &= ‘”Oszoa—gl exp(—sT>). (57a,b)

If we write the equation of a streamline

de s
Vg B Us

(58)
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Figure 7.The time 7; dependence of the values? and a2 at wy = 2Q9 = 08165 (a)
£0 = 1/3,89 = 0,G9 = 0-385; (b)ép = 0,50 = 7/2,GY = 0; ()& = 05,89 = 0,GY = 0:3536; (d)
& =16=0, Gg =0; undamped vibrations; — — — damped vibrations whenr= y» = y = 0-5; and

damped vibrations whep, = 0-1 andy» = 0-9.

and substitute the expressions (57) in it, then we arrive at the relationship (31), which is
fulfilled along each streamline. In other words, the picture of the streamlines (Figure 2) is
unchanged with time, but the field of the velocities constructed along the streamlines is time
dependent in such a manner that at each pnint of this field the direction of the velocity
vectorv remains constant, and its modulus decreases by the exponential law. In other words,
in the case of the internal resonance one-to-ong at v, = y, the flow of the phase fluid is

quasi steady-stable. When this takes place, the system can execute the following three types
of motion:

(1) The aperiodic damped regime without energy exchange, which corresponds to the points
g9 = 05, 8o =0, GY = —0.5833 andy = 0.5, §y = 7, G? = —1.0833, whose
coordinates are defined by the formula (28).

(2) The damped vibrational regime accompanied by two-sided energy exchange (closed and
nonclosed streamlines).

(3) The aperiodic damped regime accompanied by one-sided energy exchange, which corre-
sponds to the separatrixes with the valile = —1-0833, and the analytical solution for
this damped soliton-like regime has the form
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2\/—0-1154(5;‘— &, )%+ 0-3397+ 0-23077 §
log -
§— SO o
Eo
= +0-083—[1 — exp(—sT>)], (59)
S

where the sign+’ fits to the initial magnitudeg, < & < 0-8397, —m £ 2rn < §p <
2mn and 016032< & < &;, —2m +£2nn < 8o < —m £ 2mn, but the sign~’ conforms
to the initial magnitudeg, < & < 08397, —2r &+ 27n < & < —m £ 27n and
0-16032< &y < &;, —m £ 2mn < 8o < £2mn.

In this case viscosity has a stabilizing effect on the system owing to the fact that the energy
exchange is quenched as time goes on.

If 1 # ¥», then the streamlines disappear, i.e., the phase fluid flow becomes unsteady,
and phase fluid elements during their motions begin to describe intricate trajectories, some of
which are presented in Figure 4. Figures 4(a—c) present the trajectories of the phase fluid ele-
ment motion ay; = 0-1 andy, = 0.9, which moves, respectively, along the closed streamline
with G? = —0.9, the upper and lower branches of the separatrix (59) @4tk= —1.0833, and
along the nonclosed streamline wilf = —1-1 (Figure 2) ifu = 0ory; = y, = y = 0-5.
Reference to Figures 4(a—c) shows thaij; it y», viscosity has a twofold effect on the sys-
tem: a destabilizing influence producing unsteady energy exchange, and a stabilizing influence
resulting in damping of the energy exchange mechanism.

Figure 5 shows th&@,-dependence of the square of the amplitudeanda, for various
magnitudes of the valug in the cases of free undamped and damped vibrations.

4.2.2. The two-to-one internal resonance

In the case of two-to-one internal resonance, if we introduce damping features of the system

in terms of fractional derivatives, then, without regard to the magnitudes of the fractional

parameters; andys,, the phase fluid flow becomes unsteady, and phase fluid elements during

their motions begin to describe intricate trajectories, some of which are presented in Figure

6. Figures 6(a—c) present the trajectories of the phase fluid element motipn=a0-1 and

y» = 0-9 (solid lines) and;;, = y» = 0-5 (dashed lines). These plots, in the case of undamped

vibrations {« = 0), corresponds, respectively, to the stable stationary regime (53)3ita

0-385, the periodic energy exchange regime (the closed streamlineGith 0-3536), and

to the aperiodic motion along the streamlihe= —7/2 with G = 0 (Figure 3). Reference

to Figures 6(a—c) shows that, in the case of the two-to-one internal resonance, viscosity has a

twofold effect on the system once again: a destabilizing influence producing unsteady energy

exchange, and a stabilizing influence resulting in damping of the energy exchange mechanism.
Figure 7 shows th&i-dependence of the square of the amplitudganda, for various

magnitudes of the valug in the cases of free undamped and damped vibrations.

5. Conclusions

Based on the analysis carried out, the following conclusions can be deduced. The given non-
linear two-degree-of-freedom system under the conditions of the one-to-one and two-to-one
internal resonances behaves differently, depending on whether it possesses damping features
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defined by fractional derivatives or not. Under both resonances in the absence of damping,
three types of the energy exchange mechanism are observed: two-sided energy exchange (a
periodic motion), one-sided energy interchange (an aperiodic motion), and energy exchange
does not occur (stationary vibrations). In the phase plane free undamped vibrations of such
a system correspond to steady-state motion of the phase fluid. If fractional derivatives with
two independent fractional powers are introduced into the equations of motion, then during
both internal resonances only periodic energy exchange accompanied by energy dissipation
is observed at any initial conditions. In the phase plane such damped vibrations of the system
correspond to unsteady motion of the phase fluid. Under the one-to-one internal resonance,
there exists one more possibility for oscillatory motions which is realized when the frac-
tional powers of two fractional derivatives of equal magnitude. In this case, both periodic
and aperiodic energy exchange mechanisms accompanied by energy dissipation are observed.
When this takes place, the aperiodic energy exchange occurs at those initial conditions which
correspond to stationary and aperiodic regimes in the absence of damping. In the phase plane
such damped vibratory motions correspond to the quasi-steady state motion of the phase
fluid, during which the trajectories of the fluid particle motions coincide with the stream-
lines; however, the velocity of the particles’ motion along the stream-lines varies with time.
Thus, in the case of the internal resonance, viscosity may have a twofold effect on the system:
a destabilizing influence producing unsteady energy exchange, and a stabilizing influence
resulting in damping of the energy exchange mechanism.

Acknowledgments

This work is supported in part by the Russian Foundation for Basic Research under Grants
No. 97-01-00651 and No. 98-15-96001.

References

1. A. H. Nayfeh and B. Balachandran, Modal interactions in dynamical and structural sygtephsMech.
Rev.42 (1989) S175-S201.

2. D. Sado, Energy transfer in two-degree-of-freedom vibrating systems — a sMe&yanika Teoretyczna i
Stosowana1 (1993) 151-173.

3. A A.\Vitt and G. A. Gorelik, Vibrations of an elastic pendulum as an example of vibrations of two
parametrically coupled linear systems (in RussidnTech. PhysNo 2—-3 (1933) 294-307.

4. D. Sado, Analysis of vibration of two-degree of freedom system with inertial coupaghine Dynamics
Problemsl (1984) 67-77.

5. M. V. Shitikova, Modelling of free nonlinear vibrational processes in suspension bridges by a two-mass
system (in Russian). InAdvanced Methods of Static and Dynamic Analysis of Structlréfronezh:
Voronezh Civil Engineering Institute (1992) 147-153.

6. A. M. Abdel-Ghaffar and G. W. Housner, Ambient vibration tests of suspension biddgeg. Mech. Div.
ASCE104 (1978) 983-999.

7. A. M. Abdel-Ghaffar and R. H. Scanlan, Ambient vibration studies of Golden Gate Bridge. |: suspended
structureJ. Eng. Mech. ASCE11 (1985) 463—482.

8. D. Sado, Damping effect in forced vibrations of an autoparametric two-degrees-of-freedom #$§attm.
Dyn. Prob.10 (1995) 91-104.

9. Yu. A. Rossikhin and M. V. Shitikova, Effect of viscosity on the vibrational processes in a combined
suspension systerivlech. Solids30 (1995) 157-166.

10. S.G.Samko, A. A. Kilbas and O. |. Mariché&ractional Integrals and Derivatives. Theory and Applications
(in Russian). Minsk: Nauka i Tekhnika (1988) (Engl. transl. by Gordon and Breach Science Publ.) 688 pp.
11. A. H. NayfehPerturbation Methods. New York: Wiley (1973) 450 pp.



362 Yu. A. Rossikhin and M. V. Shitikova

12.

13.

14.

15.

16.

Yu. A. Rossikhin and M. V. Shitikova, Analysis of nonlinear free vibrations of suspension bridgsund

Vibr. 186 (1995) 369-393.

Yu. A. Rossikhin and M. V. Shitikova, Applications of fractional calculus to dynamic problems of linear and
nonlinear hereditary mechanics of solidspl. Mech. Re\60 (1997) 15-67.

Yu. A. Rossikhin and M. V. Shitikova, Application of fractional calculus for analysis of nonlinear damped
vibrations of suspension bridgek.Eng. Mech124 (1998) 1029-1036.

M. Abramowitz and |.Stegun (eddllandbook of Mathematical Functions With Formulas, Graphs, and
Tables Washington: Nat. Bur. Stands. (1964) 558 pp.

R. K. Dodd, J. C. Eilbeck, J. D. Gibbon and H. C. Mor8s/itons and Non-linear Wave Equatioh®ndon:
Academic Press (1982) 670 pp.



