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Abstract. Free damped vibrations of a mechanical two-degree-of-freedom system are considered under the con-
ditions of one-to-one or two-to-one internal resonance,i.e., when natural frequencies of two modes – a mode of
vertical vibrations and a mode of pendulum vibrations – are approximately equal to each other or when one natural
frequency is nearly twice as large as another natural frequency. Damping features of the system are defined by the
fractional derivatives with fractional parameters (the orders of the fractional derivatives) changing from zero to
one. It is assumed that the amplitudes of vibrations are small but finite values, and the method of multiple scales
is used as a method of solution. The model put forward allows one to obtain the damping coefficient dependent on
the natural frequency of vibrations, so it has been shown that the amplitudes of vertical and pendulum vibrations
attenuate by an exponential law with damping ratios which are exponential functions of the natural frequencies.
Damped soliton-like solutions have been found analytically.

Key words: nonlinear vibrations, fractional derivative, 2dof mechanical system, energy exchange.

1. Introduction

It is known that the transfer of energy from one type to another is made possible during
vibrational processes in nonlinear systems. This is calledenergy exchange[1–2]. This phe-
nomenon is particularly evident in modern engineering structures which are very light and
flexible due to application of present-day materials, resulting in finite displacements of indi-
vidual structural elements as well as of the structure as a whole. Among such constructions are
suspension-combined systems: suspension and cable-stayed bridges, suspension roofs, etc.

Investigations on energy exchange originate from the paper by Vitt and Gorelik [3], wherein
the authors studied small nonlinear vibrations of a two-degree-of-freedom (2dof) system con-
sisting of a load suspended on a linearly elastic spring and executing pendulum vibrations and
vibrations along the spring’s axis in the same vertical plane. In spite of the apparent simplicity
of that system, it realistically explains some phenomena occurring during vibrations of more
complex nonlinear systems, and in particular, describes all types of energy exchange from
pendulum vibratory motions into oscillatory motions along the spring’s axis, andvice versa:
the periodic and aperiodic energy interchange, as well as stationary regimes during which
energy exchange is absent.

The energy exchange mechanism in a similar nonlinear 2dof system has been studied by
Sado [4] and Shitikova [5]. The system was made up of two loads, one of which was suspended
on a linearly elastic spring and executed vertical vibrations; the other was suspended on an
unstretched rod and executed pendulum vibrations in the same vertical plane. Reviews devoted
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Figure 1. Scheme of a 2dof mechanical system.

to nonlinear vibrations of 2dof systems can be found in Nayfeh and Balachandran [1] and Sado
[2].

The experimental data obtained by Abdel-Ghaffar and Housner [6] and Abdel-Ghaffar and
Scanlan [7] during ambient vibration studies of the Vincent-Thomas Suspension Bridge and
the Golden Gate Bridge, respectively, show that different vibrational modes feature different
amplitude damping factors, and the order of smallness of these coefficients tells about low
damping capacity of suspension-combined systems, resulting in prolonged energy transfer
from one partial subsystem to another. Besides, as the natural vibration frequencies increase,
the corresponding damping ratios decrease.

Introducing common linear viscosity (when damping features of the system are prescribed
by the first derivative of the displacement with respect to time) into the nonlinear 2dof system
results in damping of the energy exchange process [8–9]; however, in this case the damping
coefficient is independent of the frequency of vibrations, but this result is in conflict with the
experimental data presented in [6–7].

To get the theoretical investigations in line with the experiment, in the given paper, frac-
tional derivatives are introduced for describing the processes of internal friction proceeding in
a 2dof mechanical system at free vibrations. The model put forward allows one to obtain the
damping coefficient dependent on the natural frequency of vibrations. The model proposed
describes realistically the dynamic behaviour of many nonlinear systems with more than one
degree-of-freedom, among them multi-degree-of-freedom suspension-combined systems in
the special case that only two interacting modes dominate in the vibratory motion.

2. Problem formulation

Consider nonlinear free damped vibrations of a two-degree-of-freedom mechanical system
presented in Figure 1. Assume that such a system vibrates in a viscous medium whose viscous
features are defined by fractional derivatives. In this case the damping forces acting on the
massm1 and the pendulum of lengthl and massm2 are, respectively, the following

Q1 = βDγ1y, Q2 = βlDγ2ϕ, (1)
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wherey is the displacement of the massm1, ϕ is the deflection angle of the pendulum,β is the
viscous coefficient of the medium, the damping forceQ1 is directed vertically, the damping
forceQ2 is directed tangentially to the trajectory of the massm2, the fractional derivative
Dγ x (x = y or ϕ) is defined as follows [10, pp. 41–44]

Dγ x = d

dt

∫ t

0

x(u)du

0(1− γ )(t − u)γ , (0< γ 6 1), (2)

whereγ is the order of the fractional derivative (fractional parameter), and0(1− γ ) is the
Gamma-function.

Then the equations of motion of such a system in dimensionless form, accurate to within
values of second-order smallness, can be written as

ÿ∗ + βDγ1y∗ + ω∗20 y
∗ − aϕ̇2− aϕϕ̈ = 0, (3a)

ϕ̈ + βDγ2ϕ +�∗20 ϕ − bϕÿ∗ = 0, (3b)

where an overdot denotes a differentiation with respect to the timet ,
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whereg is acceleration of gravity, andk is the spring rigidity. For ease of presentation,
asterisks will be omitted henceforth.

Assume that the linear natural frequencyω0 and the linear natural frequency�0 are equal
or approximately equal to each other (the case of the one-to-one internal resonance)

ω0 = �0+ ε2σ (4a)

or the linear natural frequencyω0 is nearly twice as large as the linear natural frequency�0

(the case of the two-to-one internal resonance), such that

ω0 = 2�0+ εσ, (4b)

whereσ is a detuning parameter, andε is a small parameter which is of the same order of
magnitude as the amplitudes.

The set of Equations (3) with due account for relationship (4a) or (4b) describes the
two processes which are related to each other and go on concurrently: the energy-exchange
mechanism between vertical vibrations of the massm1 and the pendulum’s vibrations, and
the process of energy dissipation during this interaction. Since further investigations will be
carried out by the method of multiple scales and these two processes should proceed on the
same time scale, then it is necessary to assume that the viscosity coefficientβ has the order of
ε2 in the case of the one-to-one internal resonance or the order ofε in the case of the two-to-
one internal resonance,i.e., it can be represented asβ = ε2µ or β = εµ, respectively, where
µ is a finite value. At other orders of smallness of the viscosity coefficient, energy dissipation
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will occur either too fast (when the order of smallness is larger thanε2 in the case of the one-
to-one internal resonance or the order ofε in the case of the two-to-one internal resonance)
or too slow (when the order of smallness is less thanε2 in the case of the one-to-one internal
resonance or the order ofε in the case of the two-to-one internal resonance) relative to the
process of energy exchange.

A fractional derivative is the immediate extension of an ordinary derivative. In fact, when
γ → 1, the function[0(1− γ )(t − u)γ ]−1 tends to the Diracδ-functionδ(t − u), and hence
Dγ x tends toẋ, i.e., atγ → 1 the fractional derivative goes over into the ordinary derivative,
and the mathematical model of the 2dof mechanical system under consideration transforms
into the Kelvin–Voigt model, wherein the elastic element behaves nonlinearly but the viscous
element behaves linearly. Whenγ → 0, the fractional derivative Dγ x tends tox(t). To put
it otherwise, the introduction of the new fractional parameterγ along with the parameterµ
allows one to change not only the magnitude of viscosity at the cost of an increase or decrease
in the parameterµ, but also the character of viscosity at the sacrifice of variations in the
fractional parameter.

3. Method of solution

An approximate solution of Equations (3) for small amplitudes weakly varying with time can
be represented by an expansion in terms of different time scales in the following form [11,
Chapter 6]

y(t) = εy1(T0, T1, T2, . . .)+ ε2y2(T0, T1, T2, . . .)+ ε3y3(T0, T1, T2, . . .)+ · · · , (5a)

ϕ(t) = εϕ1(T0, T1, T2, . . .)+ ε2ϕ2(T0, T1, T2, . . .)+ ε3ϕ3(T0, T1, T2, . . .)+ · · · , (5b)

whereTn = εnt (n = 0,1,2, . . .) are new independent variables.
Considering that

d

dt
= D0+ εD1+ ε2D2+ · · · , d2

dt2
= D2

0+ 2εD0D1+ ε2(D2
1+ 2D0D2)+ · · ·

and substituting (5) in (3), after equating the coefficients at like powers ofε to zero, we obtain

to orderε

D2
0y1 + ω2

0y1 = 0, D2
0ϕ1+�2

0ϕ1 = 0; (6a,b)

to orderε2:

D2
0y2 + ω2

0y2 = −2D0D1y1 + aϕ1D2
0ϕ1+ a(D0ϕ1)

2− µ(2− k)Dγ1
0 y1, (7a)

D2
0ϕ2+�2

0ϕ2 = −2D0D1ϕ1+ bϕ1D2
0y1− µ(2− k)Dγ2

0 ϕ1; (7b)

to orderε3:

D2
0y3 + ω2

0ϕ3 = −2D0D1y2 − (D2
1+ 2D0D2)y1 + aϕ1(D

2
0ϕ2+ 2D0D1ϕ1)

+aϕ2D2
0ϕ1+ 2aD0ϕ1(D1ϕ1+ D0ϕ2)− µ(k − 1)Dγ1

0 y1, (8a)
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D2
0ϕ3+�2

0ϕ3 = −2D0D1ϕ2− (D2
1+ 2D0D2)ϕ1+ bϕ1(D

2
0ϕ2+ 2D0D1y1)

+bϕ2D2
0y1 − µ(k − 1)Dγ2

0 ϕ1, (8b)

where Dn = ∂/∂Tn.
The sets of Equations (6)–(8) describe the cases of the one-to-one and two-to-one internal

resonances atk = 2 andk = 1, respectively.
During the deduction of Equations (6)–(8) it was assumed that

Dγ =
(

d

dt

)γ
= (D0+ εD1+ ε2D2+ · · ·)γ

= Dγ

0 + εγDγ−1
0 D1+ ε2γ (γ − 1)Dγ−2

0 D2+ · · · , (9)

where Dγ0 is obtained from (2) by replacingt with T0. Thus, the fractional derivative is inter-
preted as the fractional power of the differentiation operator. Such a notion of the fractional
derivative is used in scientific literature under a proper interpretation for expanding fractional
differentiation to some functional spaces (see, for example, Samkoet al. [10, Chapter 2,
Section 5]).

We shall seek the solution of Equations (6) in the form

y1 = A1(T1, T2)exp(iω0T0)+ Ā1(T1, T2)exp(−iω0T0), (10a)

ϕ1 = A2(T1, T2)exp(i�0T0)+ Ā2(T1, T2)exp(−i�0T0), (10b)

whereA1 andA2 are unknown complex functions, and̄A1 andĀ2 are the complex conjugates
of A1 andA2, respectively.

The influence of the detuning parameterσ on undamped free vibrations was investigated in
Rossikhin and Shitikova [12], and hence, in the present paper, we shall examine the influence
of damping modelled by a fractional derivative on free damped vibrations of the system under
consideration,i.e., we shall putσ = 0 in further discussion.

3.1. THE CASE OF A ONE-TO-ONE INTERNAL RESONANCE

To construct the solution in the case of a one-to-one internal resonance, it will suffice to
restrict consideration to the terms of the order ofε3 and to consider the amplitudesA1 andA2

as functions ofT1 andT2.
In order to eliminate secular terms arising in the second approximation, it would suffice to

consider the functionsA1 andA2 dependent onT2 only. Then, the solution of Equations (7) at
k = 2 with due account of (10) takes the form

y2 = 2
3a
�2

0

ω2
0

A2
2 exp(2iω0T0)+ cc, (11)

ϕ2 = b ω
2
0

�2
0

(1
3A1A2 exp(2i�0T0)− A2Ā1)+ cc, (12)

wherecc is the complex conjugate part to the preceding terms.
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If we substitute expressions (10)–(12) in the right-hand sides of Equations (8) atk = 2,
then we are led to a system of equations for determiningy3 andϕ3. The solution should not
contain the secular terms, and therefore, the following relationships are to be satisfied

−iD2A1 − 1
2µω

−1
0 (iω0)

γ1A1+ abω0(
1
3A1A2Ā2+ 1

2Ā1A
2
2) = 0, (13)

−iD2A2 − 1
2µ�

−1
0 (i�0)

γ2A2− 4
3ab�0A

2
2Ā2+ b2ω

4
0

�3
0

(1
3A1Ā1A2+ 1

2A
2
1Ā2) = 0. (14)

When deducing Equations (13) and (14), we used the known formula from fractional
calculus [10, Table 9.1, p. 140]

Dγ

0 eaT0 = aγ eaT0 + sinπγ

π

∫ ∞
0

uγ e−uT0 du

u+ a . (15)

The second term in formula (15) can be omitted in comparison with the first one in the
two cases: when the valueγ is small, for example of the order ofε, or when the transient
processes, which define only the drift of the equilibrium position around which the vibration
motion occurs [13], are neglected. The first assumption is valid for suspension bridges [14]
and is verified by experimental data [6–7]. In the present paper, we consider the second case.

Let us multiply Equations (13) and (14) bȳA1 andĀ2, respectively, and find their com-
plex conjugates. Adding every pair of the mutually adjoint equations with each other and
subtracting one from the other, we obtain as a result

i(A1D2Ā1− Ā1D2A1)− µωγ1−1
0 A1Ā1 cos(1

2πγ1)

+abω0(
2
3A1Ā1A2Ā2 + 1

2(Ā
2
1A

2
2+ A2

1Ā
2
2)) = 0, (16a)

i(A2D2Ā2− Ā2D2A2)− µ�γ2−1
0 A2Ā2 cos(1

2πγ2)

+bω0(
2
3aA1Ā1A2Ā2 − 8

3aA
2
2Ā

2
2+ 1

2b(A
2
1Ā

2
2+ Ā2

1A
2
2)) = 0, (16b)

i(A1D2Ā1+ Ā1D2A1)+ iµωγ1−1
0 A1Ā1 sin(1

2πγ1)+ 1
2abω0(A

2
1Ā

2
2− Ā2

1A
2
2) = 0, (16c)

i(A2D2Ā2+ Ā2D2A2)+ iµ�γ2−1
0 A2Ā2 sin(1

2πγ2)+ 1
2b

2ω0(Ā
2
1A

2
2− A2

1Ā
2
2) = 0. (16d)

Representing the functionsA1 andA2 in polar form

A1 = a1 exp(iϕ1), A2 = a2 exp(iϕ2), (17)

we rewrite Equations (16) as

(a2
1)
. + s1a2

1 − abω0a
2
1a

2
2 sinδ = 0, (18a)

(a2
2)
. + s2a2

2 + b2ω0a
2
1a

2
2 sinδ = 0, (18b)

ϕ̇1− 1
2σ1+ abω0a

2
2(

1
3 + 1

2 cosδ) = 0, (18c)

ϕ̇2− 1
2σ2+ abω0(

1
3a

2
1 − 4

3a
2
2 +

1

2

b

a
a2

1 cosδ) = 0, (18d)
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where(a2
i )
. = 2ai ȧi(i = 1,2), an overdot denotes differentiation with respect toT2, δ =

2(ϕ2− ϕ1), and

s1 = µωγ1−1
0 sin(1

2πγ1), s2 = µ�γ2−1
0 sin(1

2πγ2),

σ1 = µωγ1−1
0 cos(1

2πγ1), σ2 = µ�γ2−1
0 cos(1

2πγ2).

The obtained set of Equations (18) differs from the similar set presented in [9] for an
ordinary linear damping in that it describes the vibratory motions with the damping coeffi-
cient depending on the vibration frequency. This phenomena is verified by experimental data
obtained for nonlinear systems [6–7, 14].

Equations (18a) and (18b) can be rewritten as(
a2

1

). + s1a2
1(

a2
2

). + s2a2
2

= −a
b
. (19)

Introducing new functionsξ(T2) andη(T2), such that

a2
1 = E0ξ(T2)exp(−s1T2), a2

2 = E0η(T2)exp(−s2T2), (20)

whereE0 is the initial system’s energy, and substituting (20) in (19), we have

ξ̇ exp(−s1T2)

η̇ exp(−s2T2)
= −a

b
. (21)

The solution to (21) gives the following relation between the functionsξ(T2) andη(T2)

η(T2) = b

a
(1− ξ)e(s2−s1)T2 − b

a
(s2− s1)

∫ T2

0
(1− ξ)e(s2−s1)T2 dT2. (22)

Then, Equations (18) take the form

ξ̇ − b2ω0E0ξ

[
(1− ξ)e−s1T2 − (s2− s1)e−s2T2

∫ T2

0
(1− ξ)e(s2−s1)T2 dT2

]
sinδ = 0, (23a)

δ̇ − (σ2− σ1)+ 2
3abω0(a

2
1 − 5a2

2)+ abω0

(
b

a
a2

1 − a2
2

)
cosδ = 0. (23b)

The initial conditions

ξ |T2=0 = ξ0, δ|T2=0 = δ0 (24)

should be added to (23).
The nonlinear set of Equations (23) with the initial conditions (24) completely describe

the vibrational process of the mechanical system being investigated under the condition of the
internal resonance one-to-one. The set of Equations (23) with due account for (20), (22) and
(24) can be solved numerically.
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In the partial case whenγ1 = γ2 = γ , the solution can be reduced to the calculation of
an incomplete elliptic integral of the first kind. Thus, multiplying (18a) and (18b) byb anda,
respectively, then adding them, and using (4a), we obtain

Ė + µωγ−1
0 E sin(1

2πγ ) = 0, (25a)

E = a2
1 + ab−1a2

2, (25b)

whereE is the energy of the system.
Integration of (25) yields

E = E0 exp(−sT2), s = s1|γ1=γ . (26a,b)

Formulas (26) show that, owing to the fractional parameterγ , dissipation of the system’s
energy depends on the natural frequency of vibrations.

Whenγ → 1, the damping values tends to the viscosity coefficientµ, and from (26) it
follows that

E = E0 exp(−µT2), s = µ. (27a,b)

Reference to (27) shows that in the caseγ = 1 the damping coefficient is independent of
the natural frequencyω0.

Whenγ1 = γ2 = γ , Equations (20) and (23) take, respectively, the form

a1 =
√
E0ξ exp(−1

2sT2), a2 =
√
E0(1− ξ)ba−1 exp(−1

2sT2), (28a,b)

ξ̇ = ω0E0b
2ξ(1− ξ)exp(−sT2) sinδ, (29a)

δ̇ = b2ω0E0

[
(1− 2ξ) cosδ − 2

3

a

b
ξ + 10

3 (1− ξ)
]

exp(−sT2). (29b)

Dividing (29b) by (29a), we arrive at

d cosδ

dξ
+ 1− 2ξ

ξ(1− ξ) cosδ = 2a

3b

1

1− ξ −
10

3

1

ξ
. (30)

The solution of (30) has the form

G1(ξ, δ) = ξ(1− ξ) cosδ − a

3b
ξ2− 5

3 (1− ξ)2 = G0
1, (31)

whereG0
1 = G1(ξ0, δ0) is an arbitrary constant.

Eliminating the valueδ from (29a), taking due account of (31), and integrating overT2, we
have

1√
m1m2

∫ ξ

ξ0

dξ[
(ξ2+ p1ξ + q1)(ξ

2+ p2ξ + q2)
]1/2 = ω0b

2E0

s

[
1− exp(−sT2)

]
, (32)
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where

m1 = −8
3 −

a

3b
, m2 = 2

3 +
a

3b
, p1 = 13

3m1
, p2 = − 7

3m2
,

q1 = −(G0
1+ 5

3)m
−1
1 , q2 = (G0

1+ 5
3)m

−1
2 .

The integral on the left-hand side of (32) can be transformed into an incomplete elliptic
integral of the first kind [15, Chapter 17].

Let us investigate the particular solution of (29) corresponding to the caseξ̇ = 0. Then
it follows from (29a) that sinδ = 0, i.e., δ = 0 ± πn(n = 0,1,2, . . .). Considering this
magnitude ofδ in (28b), we are led to the following relationship forξ

ξ = ξ±0 =
±1+ 10

3

2(±1+ a
3b + 5

3)
, (33)

which vanishes the expression in square brackets in (29b).
Substituting the found magnitude ofξ±0 (33) in (28), we obtain the expressions for the

amplitudes of vibrations

a1 = (a1)0 exp

(−sT2

2

)
, a2 = (a2)0 exp

(−sT2

2

)
, (34)

where(a1)0 and (a2)0 are the initial magnitudes of the amplitudesa1 anda2, respectively.
From (34) it is seen that the obtained particular solution describes the aperiodic regime without
energy exchange.

Puttingµ = 0 in all equations, we can obtain the solution for free undamped vibra-
tions of the system under consideration being under the conditions of the one-to-one internal
resonance.

3.2. THE CASE OF A TWO-TO-ONE INTERNAL RESONANCE

Now consider the case (4b),i.e., when a two-to-one internal resonance takes place. To con-
struct the solution in the case of the two-to-one internal resonance, it will suffice to restrict
consideration to the terms of the order ofε2 and to consider the amplitudesA1 andA2 as
functions ofT1 only.

In order to eliminate secular terms arising in the second approximation, it would suffice to
consider the following equalities:

2iω0D1A1 + µA1(iω0)
γ1 + 2aA2

2�
2
0 = 0, (35)

2i�0D1A2 + µA2(i�0)
γ2 + bA1Ā2ω

2
0 = 0. (36)

As a result of the procedure used for the deduction of (18), we obtain from relations (35)
and (36) with due account of (4b)

(a2
1)
. + s1a2

1 +
1

2
aω0a1a

2
2 sinδ = 0, (37a)

(a2
2)
. + s2a2

2 − 2bω0a1a
2
2 sinδ = 0, (37b)
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ϕ̇1− 1
2σ1− 1

4aω0a
2
2a
−1
1 cosδ = 0, (37c)

ϕ̇2− 1
2σ2− bω0a1 cosδ = 0, (37d)

where(a2
i )
. = 2ai ȧi(i = 1,2), an overdot denotes differentiation with respect toT1, and

δ = 2ϕ2− ϕ1.
The obtained set of (37) differs from the similar set presented in [9] for an ordinary linear

damping in that it describes the vibratory motions with the damping coefficient depending
on the vibration frequency. This phenomena is verified by experimental data obtained for
nonlinear systems [6–7, 14].

Equations (37a) and (37b) can be rewritten as

(a2
1)
. + s1a2

1

(a2
2)
. + s2a2

2

= −1

4

a

b
. (38)

Introducing new functionsξ(T1) andη(T1), such that

a2
1 = E0ξ(T1)exp(−s1T1), a2

2 = E0η(T1)exp(−s2T1), (39)

and substituting (39) in (38) yields

ξ̇ exp(−s1T2)

η̇ exp(−s2T2)
= −1

4

a

b
. (40)

The solution to (40) gives the following relation between the functionsξ(T1) andη(T1)

η(T1) = 4
b

a
(1− ξ)e(s2−s1)T1 − 4

b

a
(s2− s1)

∫ T1

0
(1− ξ)e(s2−s1)T1 dT1. (41)

Then the set of (37) takes the form

ξ̇ + 2bω0E
1/2
0 ξ1/2 es1T1/2

×
[
(1− ξ)e−s1T1 − (s2− s1)e−s2T1

∫ T1

0
(1− ξ)e(s2−s1)T1 dT1

]
sinδ = 0, (42a)

δ̇ − (σ2− 1
2 σ1)+ ω0E

1/2
0 ξ−1/2(1

4aη e(s1/2−s2)T1 − 2bξe−s1T1/2) cosδ = 0. (42b)

The initial conditions

ξ |T1=0 = ξ0, δ|T1=0 = δ0 (43)

should be added to (42).
The nonlinear set of Equations (42) with the initial conditions (43) completely describe

the vibrational process of the mechanical system being investigated under the condition of
the internal resonance two-to-one. Equations (42) with due account for (41) and (43) can be
solved numerically.

In the particular case whenµ = 0, i.e., damping effect is neglected, (42) take the form

ξ̇ = −B√ξ(1− ξ) sinδ, (44a)
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δ̇ = B
(√

ξ − 1− ξ
2
√
ξ

)
cosδ, (44b)

whereB = 2bω0E
1/2
0 .

With δ̇ = ξ̇ dδ/dξ and using (44a) yields

d cosδ

dξ
+ 1

2

1− 3ξ

ξ(1− ξ) = 0. (45)

The solution of (45) has the form

cosδ = G0
2

ξ1/2(1− ξ), (46)

whereG0
2 is an arbitrary constant determined from the initial conditions and defined by

G0
2(ξ0, δ0) = ξ1/2

0 (1− ξ0) cosδ0. (47)

Eliminating the variableδ from (44a) and (46), and integrating overT1, we have∫ ξ

ξ0

dξ

(ξ3− 2ξ2+ ξ −G0 2
2 )

1/2
= −BT1. (48)

It may be shown that the integral in (48) can be transformed into an incomplete elliptic
integral of the first kind [13, Chapter 17].

If ξ0→ 1 or ξ0→ 0, then, as follows from formula (47),G0
2 = 0. Substituting the known

valueG0
2 in the integral (48), we obtain∫ ξ

ξ0

dξ

(1− ξ)ξ1/2
= −BT1. (49)

It can be seen from (49) with due account for (44) that, whenξ = ξ0 = 1, only phase
modulated motions are realized, becausea1 = const, a2 = 0, but δ = −ϕ1 = −ϕ10, where
ϕ10 is the initial phase of the vibrations. Atξ0 6= 0, Equation (49) takes the form

log

∣∣∣∣∣ξ1/2− 1

ξ1/2+ 1

∣∣∣∣∣
∣∣∣∣∣
ξ

ξ0

= −BT1, (50)

or

ξ =
[

1+ ξ1/2
0 − (1− ξ1/2

0 )exp(−BT1)

1+ ξ1/2
0 + (1− ξ1/2

0 )exp(−BT1)

]2

,

δ(T1) = δ0 = π

2
+ πn, n = 0,1,2, . . . . (51)

Reference to (51) shows that this formula describes pure amplitude-modulated motions,
during which the one-sided energy exchange between the vertical and pendulum vibrations
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takes place such thatξ → 1 asT1 increases. Ifξ0 = 0, then from (51) we obtain the known
soliton-like solution in the form of a single kink [16, Chapter 7].√

ξ = tanh(1/2 BT1). (52)

Physically speaking, this solution-kink is responsible for the one-sided energy exchange
when the energy of the pendulum vibration completely transforms into the energy of the
vertical vibration with time, so that the pendulum vibrations give way to the vertical vibrations.

From (44a) and (44b) it can be found thatξ̇ = 0 andδ̇ = 0 if

ξ±0 = 1
3, cosδ±0 = ±1, (53)

i.e., the initial conditions (53) correspond to the stationary regime when the energy exchange
is absent.

4. Numerical results

As an example, we consider vibrations of the system presented in Figure 1 at the following
magnitudes of the parameters: in the case of the one-to-one resonancea = 1·7913, a/b =
5, ω2

0 = b,µ = 0·005, andE0 = 1; in the case of the two-to-one resonancea = 2, a/b =
12, ω2

0 = 4b,µ = 0·05, andE0 = 1.

4.1. FREE UNDAMPED VIBRATIONS

Before we investigate the influence of viscosity on the nonlinear damped vibrations of the
system under discussion, we consider the case whenµ = 0, i.e., viscosity is absent.

To analyze different vibrational regimes corresponding to different initial conditions, it is
convenient to use a hydrodynamic analogy which has been described in detail in [12]. For
this purpose we introduce for consideration the phase fluid moving along the planeξδ in the
channel of the finite width(0 6 ξ 6 1) and the infinite length(∞ < δ < ∞) with the
velocity v(vξ = ξ̇ and vδ = δ̇). Each point with the coordinatesξ, δ on the phase plane
corresponds to certain magnitudes of the amplitudesa1 and a2 at the fixed instant, and to
the phase difference relative to each other at the same instant. Due to such hydrodynamic
analogy,ξ̇ andδ̇ are expressed in terms of one and the same stream function in the case of the
one-to-one resonance

ξ̇ = −ω0b
2E0

∂G1

∂δ
, δ̇ = ω0b

2E0
∂G1

∂ξ
(54)

and in the case of the two-to-one resonance

ξ̇ = B ∂G2

∂δ
, δ̇ = −B ∂G2

∂ξ
, (55)

whereG1 andG2 are defined by formulas (31) and (47), respectively.



Analysis of nonlinear vibrations355

Note that, whenµ = 0, the phase fluid is incompressible (divv = 0) and its flow is steady
and solenoidal (rotv 6= 0). The direction of the phase fluid flow along the streamlines is
determined by the sign of the speedvδ.

Figure 2. Phase portrait in the case of the one-to-one
internal resonanceω0 = �0 = 0·3583.

Figure 3. Phase portrait in the case of the two-to-one
internal resonanceω0 = 2�0.

Plotting the stream functions in the coordinatesξ, δ for different initial conditions at the
chosen magnitudes of the system’s parameters, we can obtain the phase portraits shown in
Figures 2 and 3 for the cases of the one-to-one and two-to-one internal resonances, respec-
tively.

Note that similar phase portraits were obtained during the analysis of nonlinear free un-
damped vibrations of the Golden Gate Suspension Bridge in San Francisco for a two-to-one
and one-to-one internal resonance [12].

4.1.1. The one-to-one internal resonance
Figure 2 shows the streamlines of the phase fluid in the phase plane for the case of the one-
to-one internal resonance. Magnitudes of the valueG1 that correspond to the streamlines
are indicated by digits near the curves; the flow direction of the phase fluid elements are
shown by arrows on the streamlines. The phase fluid flows in an infinitely long channel,
whose boundaries are the straight linesξ = 0 and ξ = 1, corresponding to the phase
modulated motions. In one part the streamlines are nonclosed, which corresponds to the
periodic change of amplitudes and the aperiodic change of phases; in another part they are
closed, which corresponds to the periodic change of both amplitudes and phases. The align-
ment of the circulation zones resembles that of Von Karman vortex streets with a symmetric
arrangement. The adjacent circulation zones osculate at the saddle points with the coordinates
ξ−0 = 0·5, δ0 = π ± 2πn (n = 0,1,2, . . .),G1 = −1·0833 defined by formula (33) corre-
sponding to the unstable stationary regime. On the boundary lines of these zones (separatrixes)
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the valueG1 = −13/12, and the analytical solution corresponding to the solitonlike regime
has the form

log

∣∣∣∣∣
∣∣∣∣∣2
√
−0·1154(ξ− ξ−0 )2+ 0·3397+ 0·23077

ξ − ξ−0

∣∣∣∣∣
∣∣∣∣∣
ξ

ξ0

= ±0·083E0T2, (56)

where the sign ‘+’ fits to the initial magnitudesξ−0 < ξ0 6 0·8397, −π ± 2πn < δ0 6 2πn
and 0·160326 ξ0 < ξ−0 , −2π ± 2πn < δ0 6 −π ± 2πn, but the sign ‘-’ conforms to the
initial magnitudesξ−0 < ξ0 6 0·8397, −2π ± 2πn < δ0 6 −π ± 2πn and 0·160326 ξ0 <

ξ−0 , −π ± 2πn < δ0 6 ±2πn.
The upper branch of the separatrix describes the partial irreversible energy transfer from

the vertical vibrations to the pendulum vibrations, but the lower branch, on the contrary, is in
compliance with partial irreversible transfer of the energy of the pendulum vibrations to the
energy of the vertical vibrations.

The motion of the fluid elements along nonclosed streamlines occurs for decreasing values
of δ, but along closed streamlines in a counterclockwise direction.

Figure 4. Trajectories of the phase fluid elements flow whenω0 = �0 = 0·3583: (a)
ξ0 = 0·7703, δ0 = 0,G0

1 = −0·9; (b) ξ01 = 0·8397, ξ02 = 0·1603, δ01,2 = 0, G0
1 = −1·0833 (1 and 2 indicate

the upper and lower branches of the aperiodic regime (59), respectively); (c)ξ0 = 0·8453, δ0 = 0,G0
1 = −1·1; –

– – undamped and damped vibrations whenγ1 = γ2 = γ = 0·5; and damped vibrations whenγ1 = 0·1
andγ2 = 0·9.
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Figure 5. The time T2 dependence of the valuesa2
1 and a2

2 at ω0=�0= 0·3583: (a)

ξ0=0·5, δ0= 0, G0
1= − 0·5833; (b)ξ0=0·7703, δ0= 0, G0

1= − 0·9; (c) ξ0= 0·8397, δ0= 0,G0
1= − 1·0833;

(d) ξ0= 0·1603, δ0= 0,G0
1= −1·0833; (e)ξ0= 0·8453, δ0= 0,G0

1= −1·1; undamped vibrations; – – –
damped vibrations whenγ1= γ2= γ =0·5; and damped vibrations whenγ1= 0·1 and γ2= 0·9.

The points with the coordinatesξ+0 = 0·5, δ0 = ±2πn (n = 0,1,2, . . .),G1 = −0·5833
(points like a center) defined by formula (33) corresponding to the stable stationary regime
are located inside the closed streamlines.

4.1.2. The two-to-one internal resonance
Figure 3 shows the streamlines of the phase fluid in the phase plane for the case of the two-to-
one internal resonance. The boundary lines of the circulation zones tend to be located around
the perimeter of the rectangle bounded by the linesξ = 0, ξ = 1, andδ = ±(π/2)±2πn(n =
0,1,2, . . .). Then the flow in each rectangle becomes isolated. On all four rectangle sides,



358 Yu. A. Rossikhin and M. V. Shitikova

Figure 6. Trajectories of the phase fluid elements flow whenω0 = 2�0 = 0·8165: (a)
ξ0 = 1/3, δ0 = 0, G0

2 = 0·385; (b)ξ0 = 0·5, δ0 = 0,G0
2 = 0·3536; (c)ξ0 = 0, δ0 = π/2,G0

2 = 0;
undamped vibrations; – – – damped vibrations whenγ1 = γ2 = γ = 0·5; and damped vibrations when
γ1 = 0·1 and γ2 = 0·9.

G2 = 0 and inside it the value ofG2 preserves its sign. Along the linesδ = (π/2) ± πn
pure amplitude modulated aperiodic motions (51) are realized; on the lineξ = 1 there exists
the boundary phase-modulated regime. The transition of fluid elements from the points with
the coordinatesξ = 0, δ = (π/2)± 2πn to the pointsξ = 0, δ = −(π/2) ± 2πn proceeds
instantly. The points with coordinatesξ±0 = 1

3, δ
±
0 = ±2πn defined by (53) correspond to the

stable stationary regimes.

4.2. FREE DAMPED VIBRATIONS

Now let us investigate the influence of viscosity on nonlinear free vibrations of the system
under consideration.

4.2.1. The one-to-one internal resonance
First we consider the case whenγ1 = γ2 = γ . Then from (29) it follows that

ξ̇ = −ω0b
2E0

∂G1

∂δ
exp(−sT2), δ̇ = ω0b

2E0
∂G1

∂ξ
exp(−sT2). (57a,b)

If we write the equation of a streamline

dξ

vξ
= dδ

vδ
(58)
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Figure 7. The time T1 dependence of the valuesa2
1 and a2

2 at ω0 = 2�0 = 0·8165: (a)

ξ0 = 1/3, δ0 = 0,G0
2 = 0·385; (b) ξ0 = 0, δ0 = π/2,G0

2 = 0; (c) ξ0 = 0·5, δ0 = 0, G0
2 = 0·3536; (d)

ξ0 = 1, δ0 = 0, G0
2 = 0; undamped vibrations; – – – damped vibrations whenγ1 = γ2 = γ = 0·5; and

damped vibrations whenγ1 = 0·1 andγ2 = 0·9.

and substitute the expressions (57) in it, then we arrive at the relationship (31), which is
fulfilled along each streamline. In other words, the picture of the streamlines (Figure 2) is
unchanged with time, but the field of the velocities constructed along the streamlines is time
dependent in such a manner that at each pointξ, δ of this field the direction of the velocity
vectorv remains constant, and its modulus decreases by the exponential law. In other words,
in the case of the internal resonance one-to-one atγ1 = γ2 = γ , the flow of the phase fluid is
quasi steady-stable. When this takes place, the system can execute the following three types
of motion:

(1) The aperiodic damped regime without energy exchange, which corresponds to the points
ξ0 = 0·5, δ0 = 0, G0

1 = −0·5833 andξ0 = 0·5, δ0 = ±π, G0
1 = −1·0833, whose

coordinates are defined by the formula (28).

(2) The damped vibrational regime accompanied by two-sided energy exchange (closed and
nonclosed streamlines).

(3) The aperiodic damped regime accompanied by one-sided energy exchange, which corre-
sponds to the separatrixes with the valueG1 = −1·0833, and the analytical solution for
this damped soliton-like regime has the form
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log

∣∣∣∣∣
∣∣∣∣∣2
√
−0·1154(ξ− ξ−0 )2+ 0·3397+ 0·23077

ξ − ξ−0

∣∣∣∣∣
∣∣∣∣∣
ξ

ξ0

= ±0·083
E0

s
[1− exp(−sT2)], (59)

where the sign ‘+’ fits to the initial magnitudesξ−0 < ξ0 6 0·8397, −π ± 2πn < δ0 6
2πn and 0·160326 ξ0 < ξ

−
0 , −2π ±2πn < δ0 6 −π ±2πn, but the sign ‘−’ conforms

to the initial magnitudesξ−0 < ξ0 6 0·8397, −2π ± 2πn < δ0 6 −π ± 2πn and
0·160326 ξ0 < ξ

−
0 , −π ± 2πn < δ0 6 ±2πn.

In this case viscosity has a stabilizing effect on the system owing to the fact that the energy
exchange is quenched as time goes on.

If γ1 6= γ2, then the streamlines disappear, i.e., the phase fluid flow becomes unsteady,
and phase fluid elements during their motions begin to describe intricate trajectories, some of
which are presented in Figure 4. Figures 4(a–c) present the trajectories of the phase fluid ele-
ment motion atγ1 = 0·1 andγ2 = 0·9, which moves, respectively, along the closed streamline
withG0

1 = −0·9, the upper and lower branches of the separatrix (59) withG0
1 = −1·0833, and

along the nonclosed streamline withG0
1 = −1·1 (Figure 2) ifµ = 0 or γ1 = γ2 = γ = 0·5.

Reference to Figures 4(a–c) shows that, ifγ1 6= γ2, viscosity has a twofold effect on the sys-
tem: a destabilizing influence producing unsteady energy exchange, and a stabilizing influence
resulting in damping of the energy exchange mechanism.

Figure 5 shows theT2-dependence of the square of the amplitudesa1 anda2 for various
magnitudes of the valueξ0 in the cases of free undamped and damped vibrations.

4.2.2. The two-to-one internal resonance
In the case of two-to-one internal resonance, if we introduce damping features of the system
in terms of fractional derivatives, then, without regard to the magnitudes of the fractional
parametersγ1 andγ2, the phase fluid flow becomes unsteady, and phase fluid elements during
their motions begin to describe intricate trajectories, some of which are presented in Figure
6. Figures 6(a–c) present the trajectories of the phase fluid element motion atγ1 = 0·1 and
γ2 = 0·9 (solid lines) andγ1 = γ2 = 0·5 (dashed lines). These plots, in the case of undamped
vibrations (µ = 0), corresponds, respectively, to the stable stationary regime (53) withG0

2 =
0·385, the periodic energy exchange regime (the closed streamline withG0

2 = 0·3536), and
to the aperiodic motion along the streamlineδ = −π/2 with G0

2 = 0 (Figure 3). Reference
to Figures 6(a–c) shows that, in the case of the two-to-one internal resonance, viscosity has a
twofold effect on the system once again: a destabilizing influence producing unsteady energy
exchange, and a stabilizing influence resulting in damping of the energy exchange mechanism.

Figure 7 shows theT1-dependence of the square of the amplitudesa1 anda2 for various
magnitudes of the valueξ0 in the cases of free undamped and damped vibrations.

5. Conclusions

Based on the analysis carried out, the following conclusions can be deduced. The given non-
linear two-degree-of-freedom system under the conditions of the one-to-one and two-to-one
internal resonances behaves differently, depending on whether it possesses damping features



Analysis of nonlinear vibrations361

defined by fractional derivatives or not. Under both resonances in the absence of damping,
three types of the energy exchange mechanism are observed: two-sided energy exchange (a
periodic motion), one-sided energy interchange (an aperiodic motion), and energy exchange
does not occur (stationary vibrations). In the phase plane free undamped vibrations of such
a system correspond to steady-state motion of the phase fluid. If fractional derivatives with
two independent fractional powers are introduced into the equations of motion, then during
both internal resonances only periodic energy exchange accompanied by energy dissipation
is observed at any initial conditions. In the phase plane such damped vibrations of the system
correspond to unsteady motion of the phase fluid. Under the one-to-one internal resonance,
there exists one more possibility for oscillatory motions which is realized when the frac-
tional powers of two fractional derivatives of equal magnitude. In this case, both periodic
and aperiodic energy exchange mechanisms accompanied by energy dissipation are observed.
When this takes place, the aperiodic energy exchange occurs at those initial conditions which
correspond to stationary and aperiodic regimes in the absence of damping. In the phase plane
such damped vibratory motions correspond to the quasi-steady state motion of the phase
fluid, during which the trajectories of the fluid particle motions coincide with the stream-
lines; however, the velocity of the particles’ motion along the stream-lines varies with time.
Thus, in the case of the internal resonance, viscosity may have a twofold effect on the system:
a destabilizing influence producing unsteady energy exchange, and a stabilizing influence
resulting in damping of the energy exchange mechanism.
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